曲径通幽论坛

 找回密码
 立即注册
搜索
查看: 6708|回复: 0
打印 上一主题 下一主题

[8086] 寄存器

[复制链接]

4918

主题

5880

帖子

3万

积分

GROAD

曲径通幽,安觅芳踪。

Rank: 6Rank: 6

积分
34387
跳转到指定楼层
楼主
发表于 2009-4-1 01:50:36 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
cpu的寻址空间:
      因为数据在存储器(RAM)中存放是有规律的CPU在运算的时候需要把数据提取出来就需要知道数据在哪里这时候就需要挨家挨户的找,这就叫做寻址,但如果地址太多超出了CPU的能力范围,CPU就无法找到数据了。CPU最大能查找多大范围的地址叫做寻址能力.
多级流水线技术:
   指令执行周期中的每一步至少占有一个系统的时钟滴答(也称为一个时钟周期),但是这并不意味着处理器在开始执行下一条指令之前就必须完成所有step,处理器可以并行执行其他step.这就是流水线(pipelining)技术.
80x86微处理器是怎样炼成的
 80X86微处理器系列是美国Intel公司从20世纪70年代开始研制的微处理器的总称。我们先简单介绍80X86微处理器的发展概况,然后简要说明基于微处理器8086的计算机系统构成,最后将根据汇编语言编程的需要分节介绍8086微处理器的基本组成、8086寄存器组、存储器和外部设备。
  1.从8080/8085到8086
  8086是1978年Intel公司推出的16位微处理器。与其前一代8位微处理器8080/8085相比,8086有如下几点进步:
  (1)8086有16位数据总线,处理器与外部传送数据时,一次可传送16位二进制数,而8080/8085一次只能传送8位。
  (2)8086的寻址空间从8080/8085的64K字节提高到1M字节。
  (3)8086采用了流水线技术,而8080/8085是非流水线结构。在一个具有流水线结构处理器的系统中,可以实现处理器的内部操作与存储器或I/O接口之间的数据传送操作重叠进行,从而提高了处理器的性能。
  2.从8086到8088
  8086的内部寄存器、功能部件、数据通路以及对外的数据总线均为16位宽度,它的出现是计算机技术上一个很大的进步。但是,当时已有的微处理器外围配套芯片的数据总线都是8位的,为了使用这些8位的外围芯片组成系统,Intel公司又推出了8088微处理器。8088的内部结构与8086基本相同,也提供16位的处理能力,但对外的数据总线设计成8位。
  1981年IBM公司选择8088微处理器作为核心来设计IBM PC微计算机系统,推向市场后获得了巨大的成功,为后来的80x86系列微处理器成为主流微计算机的处理核心打下了基础。
  3.80286、80386到Pentium微处理器
  由于用户对PC机性能的要求迅速提高,Intel公司在1982年推出了80286微处理器,它仍然是16位结构。80286的内部及外部数据总线都是16位的,但它的地址线是24位的,可寻址16M字节的存储空间。80286有两种工作方式,即实模式和保护模式。实模式与8086工作方式相同,但速度比8086快。保护模式除了仍具有16M字节的存储器物理地址空间外,她还能为每个任务提供1G(230)字节的虚拟存储器地址空间。保护方式把操作系统及各任务所分配到的地址空间隔离开,避免程序之间的相互干扰,保证系统在多任务环境下正常工作。
  80386是1985年研制出的一个32位微处理器,内部及外部数据总线均为32位,地址线也为32位,因此它可处理4G(232)字节的物理存储空间。80386为每个任务提供的虚拟存储空间增加到64T(246)字节。
  1989年Intel公司又研制出新一代的微处理器80486,80486芯片内除了有一个与80386相同结构的主处理器外,还集成了一个浮点处理部件FPU以及一个8K字节的高速缓冲存储器(cache),使80486的计算速度和总体性能比80386有了明显的提高。
  1993年Intel公司又推出了Pentium微处理器,此后几乎每两年就推出一个新型号,至今市场上的Intel微处理器已是PentiumⅣ。由此可见,微处理器芯片的发展速度是非常快的。在微处理器的发展过程中,芯片主频越来越快,寻址空间越来越大,数据和地址总线也越来越宽,加之许多体系结构方面的改进措施,如流水线结构、存储器层次结构等,使微计算机的性能大大提高,其应用领域也更加广泛。
什么是寄存器:
英文名称:Register
中央处理器内的组成部份。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。
寄存器是内存阶层中的最顶端,也是系统获得操作资料的最快速途径。寄存器通常都是以他们可以保存的位元数量来估量,举例来说,一个 “8 位元寄存器”或 “32位元寄存器”。寄存器现在都以寄存器档案的方式来实作,但是他们也可能使用单独的正反器、高速的核心内存、薄膜内存以及在数种机器上的其他方式来实作出来。
寄存器通常都用来意指由一个指令之输出或输入可以直接索引到的暂存器群组。更适当的是称他们为 “架构寄存器”。
例如,x86 指令及定义八个 32 位元寄存器的集合,但一个实作 x86 指令集的 CPU 可以包含比八个更多的寄存器。
寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。
寄存器用途:
1.可将寄存器内的数据执行算术及逻辑运算;
2.存于寄存器内的地址可用来指向内存的某个位置,即寻址;
3.可以用来读写数据到电脑的周边设备。
数据寄存器:
8086 有14个16位寄存器,这14个寄存器按其用途可分为(1)通用寄存器、(2)指令指针、(3)标志寄存器和(4)段寄存器等4类。
(1)通用寄存器有8个, 又可以分成2组,一组是数据寄存器(4个),另一组是指针寄存器及变址寄存器(4个).
数据寄存器分为:
AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据.
BH&BL=BX(base):基址寄存器,常用于地址索引;
CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器.
DH&DL=DX(data):数据寄存器,常用于数据传递。
他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。
另一组是指针寄存器和变址寄存器,包括:
SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置;
BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;
SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;
DI(Destination Index):目的变址寄存器,可用来存放相对于 ES 段之目的变址指针。
这4个16位寄存器只能按16位进行存取操作,主要用来形成操作数的地址,用于堆栈操作和变址运算中计算操作数的有效地址。
(2) 指令指针IP(Instruction Pointer)
指令指针IP是一个16位专用寄存器,它指向当前需要取出的指令字节,当BIU从内存中取出一个指令字节后,IP就自动加1,指向下一个指令字节。注意,IP指向的是指令地址的段内地址偏移量,又称偏移地址(OffsetAddress)或有效地址(EA,Effective Address)。
(3)标志寄存器FR(Flag Register)
8086有一个18位的标志寄存器FR,在FR中有意义的有9位,其中6位是状态位,3位是控制位。
OF: 溢出标志位OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。
DF:方向标志DF位用来决定在串操作指令执行时有关指针寄存器发生调整的方向。
IF:中断允许标志IF位用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:
(1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;
(2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。
TF:跟踪标志TF。该标志可用于程序调试。TF标志没有专门的指令来设置或清楚。
(1)如果TF=1,则CPU处于单步执行指令的工作方式,此时每执行完一条指令,就显示CPU内各个寄存器的当前值及CPU将要执行的下一条指令。
(2)如果TF=0,则处于连续工作模式。
SF:符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。
ZF: 零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。
AF:下列情况下,辅助进位标志AF的值被置为1,否则其值为0:
(1)、在字操作时,发生低字节向高字节进位或借位时;
(2)、在字节操作时,发生低4位向高4位进位或借位时。
PF:奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。
CF:进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。)
4)段寄存器(Segment Register)
为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:
CS(Code Segment):代码段寄存器;
DS(Data Segment):数据段寄存器;
SS(Stack Segment):堆栈段寄存器;
ES(Extra Segment):附加段寄存器。
当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器 CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。
以上是8086寄存器的整体概况, 自80386开始,PC进入 。
32bit时代,其寻址方式,寄存器大小, 功能等都发生了变化, 要想学习这方面知识请参考相应资料。
8086寄存器组
  在8086的EU和BIU两部分中包含有一些工作寄存器,这些寄存器用来存放计算过程中的各种信息,如操作数地址、操作数及运算的中间结果等。微处理器从寄存器中存取数据比从存储器中存取数据要快的多,因此,在计算过程中,合理利用寄存器保存操作数、中间结果或其它信息,能提高程序的运行效率。根据这些寄存器所起的作用,8086寄存器组可以分为通用寄存器、专用寄存器和段寄存器三类
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
  1. 通用寄存器
  通用寄存器包括了8个16位的寄存器:AX、BX、CX、DX、SP、BP、DI及SI。其中AX、BX、CX、DX在一般情况下作为通用的数据寄存器,用来暂时存放计算过程中所用到的操作数、结果或其他信息。它们还可分为两个独立的8位寄存器使用,命名为AL、AH、BL、BH、CL、CH、DL和DH。这4个通用数据寄存器除通用功能外,还有如下专门用途:
  AX作为累加器用,所以它是算术运算的主要寄存器。在乘除指令中指定用来存放操作数。另外,所有的I/O指令都使用AX或AL与外部设备传送信息。
  BX在计算存储器地址时,可作为基址寄存器使用。
  CX常用来保存计数值,如在移位指令、循环指令和串处理指令中用作隐含的计数器。
DX在作双字长运算时,可把DX和AX组合在一起存放一个双字长数,DX用来存放高16位数据。此外,对某些I/O操作,DX可用来存放I/O的端口地址。
  SP、BP、SI、DI四个16位寄存器可以象数据寄存器一样在运算过程中存放操作数,但它们只能以字(16位)为单位使用。此外,它们更经常的用途是在存储器寻址时,提供偏移地址。因此,它们可称为指针或变址寄存器。
  SP称为堆栈指针寄存器,用来指出栈顶的偏移地址。
  BP称为基址指针寄存器,在寻址时作为基地址寄存器使用,但它必须与堆栈段寄存器SS联用来确定堆栈段中的存储单元地址。
  SI为源变址寄存器,在串处理指令中,SI作为隐含的源变址寄存器与DS联用,以确定数据段中的存储单元地址,并有自动增量和自动减量的变址功能。
  DI为目的变址寄存器,在串处理指令中,DI和附加段寄存器ES联用,以达到在附加段中寻址的目的,然后DI自动增量或减量。
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
8086的专用寄存器包括IP、SP和FLAGS三个16位寄存器。
  IP为指令指针寄存器,它用来存放将要执行的下一条指令地址的偏移量,它与段寄存器CS联合形成代码段中指令的物理地址。在计算机中,控制程序的执行流程就是通过控制IP的值来实现的。
  SP为堆栈指针寄存器,它与堆栈段寄存器联用来确定堆栈段中栈顶的地址,也就是说SP用来存放栈顶的偏移地址。
  FLAGS为标志寄存器,这是一个存放条件码标志、控制标志的16位寄存器。
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
8086的标志寄存器
条件码标志用来记录程序中运行结果的状态信息,它们是根据有关指令的运行结果由(CPU)自动设置的。由于这些状态信息往往作为后续条件转移指令的转移控制条件,所以称为条件码。
  ① 进位标志 CF,记录运算时最高有效位产生的进位值。
  ② 符号标志 SF,记录运算结果的符号。结果为负时置1,否则置0。
  ③ 零标志  ZF,运算结果为0时ZF位置1,否则置0。
  ④ 溢出标志 OF,在运算过程中,如操作数超出了机器可表示数的范围称为溢出。溢出时OF位置1,否则置0。
  ⑤ 辅助进位标志 AF,记录运算时第3位(半个字节)产生的进位值。
  ⑥ 奇偶标志 PF,用来为机器中传送信息时可能产生的代码出错情况提供检验条件。当结果操作数中1的个数为偶数时置1,否则置0。
  控制标志位有3位:
  ① 方向标志 DF,在串处理指令中控制处理信息的方向。当DF=1时,串处理从高地址向低地址方向处理。当DF=0时,串处理就从低地址向高地址方向处理。
  ② 陷阱标志 TF,用于调试时的单步方式操作。当TF=1时,每条指令执行完后产生陷阱,由系统控制计算机;当TF=0时,CPU正常工作,不产生陷阱。
  ③ 中断标志 IF,用于控制可屏蔽硬件中断。当IF=1时,允许8086微处理器响应中断请求,否则关闭中断。
  8086提供了设置某些状态信息的指令。必要时,程序员可使用这些指令来建立状态信息。
   调试程序Debug中提供了测试标志位的手段,它用符号表示某些标志位的值         
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
  3. 段寄存器
  8086微处理器共有4个16位的段寄存器,在寻址内存单元时,用它们直接或间接地存放段地址。
  代码段寄存器CS:存放当前执行的程序的段地址。
  数据段寄存器DS:存放当前执行的程序所用操作数的段地址。
  堆栈段寄存器SS:存放当前执行的程序所用堆栈的段地址。
  附加段寄存器ES:存放当前执行程序中一个辅助数据段的段地址。




您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|曲径通幽 ( 琼ICP备11001422号-1|公安备案:46900502000207 )

GMT+8, 2024-5-20 11:46 , Processed in 0.073098 second(s), 22 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表